An Alternative Approach to Production of Small Scale PV Module Laminated by Pressure Method
DOI:
https://doi.org/10.29329/jaasci.2022.476.03Keywords:
Laminating systems, Laminator, PV module production, Solar energyAbstract
This study involves production of the PV modules that may be used to small scale applications. It is aimed to design a procedure whereby production of PV modules could be realized under ordinary conditions by persons having no prior technical skill. With this goal, a simple to use, lamination system is designed and produced using the Solidworks software program. The electrical and mechanical parts are organized in such a manner that the lamination process could be effected either by using vacuum or high pressure. Both methods are used in preparing PV modules. Visual inspection and performance of modules prepared by either method showed no significant difference. However, the high pressure method provides an advantage since under ordinary conditions, it is easier to obtain high pressure, even mechanically. The designed lamination system is also light weight and portable. Also it can be envisioned that the system can be designed lighter by decreasing the sizes of the supporting materials to be used in application of the pressure.
References
Aktacir, M. A., Yeşilata, B., & Işıker, Y. (2008). Fotovoltaik-rüzgâr hibrid güç sistemi uygulaması. Yeni Enerji Yenilenebilir Enerji Teknolojileri, 3, 56-62 (In Turkish).
Dross, F., Labat, A., Lopez, M. A. P., Lopez, M. A. P., Raudez, R., Bruce, A., Kinne, S., & Komp, R. (2006a). Vacuum-free, cost-effective, developing-country-material-available solar cell encapsulation. Solar Energy Materials and Solar Cells, 90(14), 2159-2166. https://doi.org/10.1016/j.solmat.2006.02.011
Dross, F., Lopez, M. A. P., Lopez, M. A. P., Smith, A., Labat, A., Raudez, R., Bruce, A., Kinne, S., & Komp, R. (2006b). Capillarity solar cell encapsulation: A new vacuum-free, cost-effective encapsulation technique compatible with very thin string ribbons. 21st European Photovoltaic Solar Energy Conference. Dresden.
DuPont™. (2014). General properties of Tedlar® PVF films. Retrieved Jun 15, 2014, from https://www.dupont.com/content/dam/dupont/amer/us/en/tedlar-pvf-films/public/documents/EI00241-Dupont_TedlarGeneralProperty-Digital.pdf
El Amrani, A., Mahrane, A., Moussa, F. Y., & Boukennous, Y. (2007). Solar module fabrication. International Journal of Photoenergy, 2007, 027610. https://doi.org/10.1155/2007/27610
EVA. (2022). 0.30mm - 0.80mm thickness laminated roll solar cell Eva film for PV modules. Retrieved Nov 01, 2022, from http://www.tjskl.org.cn/products/0_30mm_0_80mm_thickness_laminated_roll_solar_cell_eva_film_for_pv_modules_encapsulation-mpz531bed7-z5090b39/showimage.html
Grunow, P., & Krauter, S. (2006). Modelling of the encapsulation factors for photovoltaic modules. IEEE 4th World Conference on Photovoltaic Energy Conference. Waikoloa. https://doi.org/10.1109/WCPEC.2006.279931
Hogan, S. J., Breen, W. F., Darkazalli, G., Murach, J. M., Nowlan, M., & Sutherland, S. F. (1993). Automated lamination for photovoltaic module encapsulation. Twenty Third IEEE Photovoltaic Specialists Conference. Louisville. https://doi.org/10.1109/PVSC.1993.346946
Komp, R., Kinne, S., & Orr, C. (2011). Laminating PV modules with EVA using solar ovens. Solar 2011 Conference. Raleigh.
Krauter, S., Pénidon, R., Lippke, B., Hanusch, M., & Grunow, P. (2011). PV module lamination durability. SWC 2011: ISES Solar World Congress. Kassel.
Lange, R. F. M., Luo, Y., Polo, R., & Zahnd, J. (2011). The lamination of (multi)crystalline and thin film based photovoltaic modules. Progress in Photovoltaics: Research and Applications, 19(2), 127-133. https://doi.org/10.1002/pip.993
Meekhun, D., Boitier, V., Dilhac, J-M., & Blin, G. (2008). An automated and economic system for measuring of the current-voltage characteristics of photovoltaic cells and modules. 2008 IEEE International Conference on Sustainable Energy Technologies. Singapore. https://doi.org/10.1109/ICSET.2008.4746989
Nowlan, M. J., Murach, J. M., Lewis, E. R., Sutherland, S. F., & Hogan, S. J. (2000). Process automation for photovoltaic module assembly and testing. Twenty-Eighth IEEE Photovoltaic Specialists Conference. Anchorage. https://doi.org/10.1109/PVSC.2000.916160
Nowlan, M. J., Murach, J. M., Sutherland, S. F., Moore, S. B., Miller, D. C., & Hogan, S. J. (2002). Development of automated photovoltaic module manufacturing processes. Twenty-Ninth IEEE Photovoltaic Specialists Conference. New Orleans. https://doi.org/10.1109/PVSC.2002.1190547
Saly, V., Ruzinsky, M., Packa, J., & Redi, P. (2002). Examination of solar cells and encapsulations of small experimental photovoltaic modules. 2nd International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. Zalaegerszeg. https://doi.org/10.1109/POLYTR.2002.1020197
Wiese, S., Kraemer, F., Meier, R., & Schindler, S. (2011). Mechanical problems of manufacturing processes for photovoltaic modules. 18th European Microelectronics & Packaging Conference. Brighton.

