Photodetection Performance of Hydrothermally Grown n-ZnO Nanorods at High Illumination Intensity

Authors

DOI:

https://doi.org/10.29329/jaasci.2023.562.04

Keywords:

Hydrothermal, Photodetector, Photoresponse, Solar light, ZnO Nanorod

Abstract

An ultraviolet photodetector based on hydrothermally grown ZnO nanorods (NRs) on a ZnO thin film sandwich structure is reported here. A thin film of ZnO is deposited on a p-Si(100) substrate by means of RF sputter. ZnO NRs are prepared by the hydrothermal method on n-ZnO/p-Si at a molarity (10 mM) and growth times (2 and 3 h) at 90 oC. The surface texture is also investigated by scanning electron microscopy. The diameters of the ZnO-NRs are found to be in the range of 36 nm to 63 nm. Current versus time (I(t)) measurements are performed under the high illumination intensities (50 and 100 mW/cm2) and the bias voltages (1, 5, and 10 V). The parameters responsivity (R), sensitivity (S), decay time (τd), and rise time (τr), are calculated. Despite the slow τd and τr, the samples prepared at 2 h in 10 mM solution perform best due to their high S and R. In particular, the S for the Z2 varies between 0.12 and 1.93, while for the Z3 it varies between 0.10 and 0.94. The R is 1.36 AW-1 for the Z2, and 0.69 AW-1 for the Z3.

References

Abdulrahman, A. F. (2020). The effect of different substrate-inclined angles on the characteristic properties of ZnO nanorods for UV photodetectors applications. Journal of Materials Science: Materials in Electronics, 31, 14357–14374. https://doi.org/10.1007/s10854-020-03995-3

Ali, G. M., Moore, J. C., Kadhim, A. K., & Thompson, C. (2014). Electrical and optical effects of Pd microplates embedded in ZnO thin film based MSM UV photodetectors: A comparative study. Sensors and Actuators A: Physical, 209, 16–23. https://doi.org/10.1016/j.sna.2014.01.010

Alsultany, F. H., Hassan, Z., & Ahmed, N. M. (2016). A high-sensitivity, fast-response, rapid-recovery UV photodetector fabricated based on catalyst-free growth of ZnO nanowire networks on glass substrate. Optical Materials, 60, 30–37. https://doi.org/10.1016/j.optmat.2016.07.004

Chen, X., Zhu, H., Cai, J., & Wu, Z. (2007). High-performance 4H-SiC-based ultraviolet p-i-n photodetector. Journal of Applied Physics, 102(2), 024505. https://doi.org/10.1063/1.2747213

Chen, H., Liu, K., Hu, L., Al-Ghamdi, A. A., & Fang, X. (2015). New concept ultraviolet photodetectors. Materials Today, 18(9), 493–502. https://doi.org/10.1016/j.mattod.2015.06.001

Chen, M., Zhao, B., Hu, G., Fang, X., Wang, H., Wang, L., Luo, J., Han, X., Wang, X., Pan, C., & Wang, Z. L. (2018). Piezo-phototronic effect modulated deep UV photodetector based on ZnO-Ga2O3 heterojuction microwire. Advanced Functional Materials, 28(14), 1706379. https://doi.org/10.1002/adfm.201706379

Echresh, A., Chey, C. O., Zargar Shoushtari, M., Khranovskyy, V., Nur, O., & Willander, M. (2015). UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. Journal of Alloys and Compounds, 632, 165–171. https://doi.org/10.1016/j.jallcom.2015.01.155

Farooqi, M. M. H., & Srivastava, R. K. (2019). Effect of annealing temperature on structural, photoluminescence and photoconductivity properties of ZnO thin film deposited on glass substrate by sol–gel spin coating method. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 90, 845–859. https://doi.org/10.1007/s40010-019-00648-x

Hirano, A., Pernot, C., Iwaya, M., Detchprohm, T., Amano, H., & Akasaki, I. (2001). Demonstration of flame detection in room light background by solar-blind AlGaN PIN photodiode. Physica Status Solidi (a), 188(1), 293–296. https://doi.org/10.1002/1521-396x(200111)188:1<293::aid-pssa293>3.0.co;2-d

Hu, L., Yan, J., Liao, M., Xiang, H., Gong, X., Zhang, L., & Fang, X. (2012). An optimized ultraviolet-a light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Advanced Materials, 24(17), 2305–2309. https://doi.org/10.1002/adma.201200512

Jeong, S., Nam, J. W., Ahn, K. B., Park, I. H., Kim, S. W., Lee, J., & Yashin, I. (2013). Slewing mirror telescope optics for the early observation of UV/optical photons from gamma-ray bursts. Optics Express, 21(2), 2263. https://doi.org/10.1364/oe.21.002263

Jiang, Z., Zhang, W., Luo, A., Atalla, M. R. M., You, G., Li, X., Wang, L., Liu, J., Elahi, A. M., Wei, L., Zhang, Y., & Xu, J. (2015). Bias-enhanced visible-rejection of GaN Schottky barrier ultraviolet photodetectors. IEEE Photonics Technology Letters, 27(9), 994–997. https://doi.org/10.1109/lpt.2015.2399302

John, H., & Blum, M.-M. (2011). Review of UV spectroscopic, chromatographic, and electrophoretic methods for the cholinesterase reactivating antidote pralidoxime (2-PAM). Drug Testing and Analysis, 4(3-4), 179–193. https://doi.org/10.1002/dta.327

Khan, W., & Kim, S.-D. (2017). Ultra-violet photo-response characteristics of p -Si/i -SiO2/ n-ZnO heterojunctions based on hydrothermal ZnO nanorods. Materials Science in Semiconductor Processing, 66, 232–240. https://doi.org/10.1016/j.mssp.2017.04.031

Khokhra, R., Bharti, B., Lee, H.-N., & Kumar, R. (2017). Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method. Scientific Reports, 7(1), 15032. https://doi.org/10.1038/s41598-017-15125-x

Lee, S. H., Kim, S. H., & Yu, J. S. (2016). Metal-semiconductor-metal near-ultraviolet (~380 nm) photodetectors by selective area growth of ZnO nanorods and SiO2 passivation. Nanoscale Research Letters, 11(1). https://doi.org/10.1186/s11671-016-1541-3

Li, Q., Wei, L., Xie, Y., Zhang, K., Liu, L., Zhu, D., Jiao, J., Chen, Y., Yan, S., Liu, G., & Mei, L. (2013). ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector. Nanoscale Research Letters, 8(1), 415. https://doi.org/10.1186/1556-276x-8-415

Liang, W., Shi, Z., Li, Y., Ma, J., Yin, S., Chen, X., Wu, D., Tian, Y., Zhang, Y., Li, C. X., & Shan, C. (2020). Strategy of all-inorganic Cs3Cu2I5/Si-Core/Shell nanowires heterojunction for stable and ultraviolet-enhanced broadband photodetectors with imaging capability. ACS Applied Materials & Interfaces, 12, 37363–37374. https://doi.org/10.1021/acsami.0c10323

Lin, C. M., Cheng, N. J., Hung, S. C., & Li, Y. M. (2016). Effect of solution on one-step hydrothermal growth of ZnO nanorod arrays and its application to ultraviolet photodetectors. Journal of Nano Research, 40, 46–57. https://doi.org/10.4028/www.scientific.net/jnanor.40.46

Luo, L., Zhang, Y., Mao, S. S., & Lin, L. (2006). Fabrication and characterization of ZnO nanowires based UV photodiodes. Sensors and Actuators A: Physical, 127(2), 201–206. https://doi.org/10.1016/j.sna.2005.06.023

Ozturk, O., Candan, B. M., Kurnaz, S., Cicek, O., & Tasci, A. T. (2022). Solar light performances of n-ZnO nanorods/p-Si-based photodetectors under high illumination intensity. Journal of Material Science: Materials in Electronics, 33, 15222–15231. https://doi.org/10.1007/s10854-022-08440-1

Pau, J. L., Anduaga, J., Rivera, C., Navarro, Á., Álava, I., Redondo, M., & Muñoz, E. (2006). Optical sensors based on III-nitride photodetectors for flame sensing and combustion monitoring. Applied Optics, 45(28), 7498. https://doi.org/10.1364/ao.45.007498

Sandvik, P., Mi, K., Shahedipour, F., McClintock, R., Yasan, A., Kung, P., & Razeghi, M. (2001). AlxGa1−xN for solar-blind UV detectors. Journal of Crystal Growth, 231(3), 366–370. https://doi.org/10.1016/s0022-0248(01)01467-1

Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., Bao, X. Y., Lo, Y. H. & Wang, D. (2007). ZnO nanowire UV photodetectors with high internal gain. Nano Letters, 7(4), 1003–1009. https://doi.org/10.1021/nl070111x

Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., Veefkind, P., & Levelt, P. (2007). Aerosols and surface UV products from ozone monitoring instrument observations: An overview. Journal of Geophysical Research, 112(D24). https://doi.org/10.1029/2007jd008809

Downloads

Published

30-06-2023

Issue

Section

Research Articles