Design of Voltage Transducer for Digital Signal Processing Development Kit in Implementation of a High Step-up DC-DC Converter
DOI:
https://doi.org/10.61326/jaasci.v2i2.99Keywords:
Analog-digital converter (ADC), High step-up DC-DC converter, Renewable energy, Signal conditioning circuit, Transducer using hall sensorAbstract
High step-up DC-DC converters are used in many industrial applications Especially, renewable energy systems that have a low output voltage and high output current need DC-DC converters with high voltage gain to meet the requirements of the grid-connected systems for a high output voltage. This study is aimed to design an implementation of hardware of the high step-up DC-DC converter’s measurement board prototype for digital signal processing (DSP) TMS320F28335 development kits. The vital parameter to detect for high step-up application systems is a sampling output voltage. This sample of output voltage is produced by using the voltage transducer (LV 25-P) with hall effect sensor in this research. A signal conditioning circuit includes an operational amplifier featuring unity gain buffer for the protection ADC of the DSP and a low pass filter circuit. Therefore, the requirements of the ADC of EZDSP TMS320F28335 development kit can be met by using this voltage transducer sensor and the signal conditioning circuit.
References
Asl, A. A., Asl, R. A., & Hosseini, S. H. (2023). A new non-isolated high step-up dc-dc converter suitable for renewable energy applications. 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). Babol. https://doi.org/10.1109/PEDSTC57673.2023.10087167
Baker, B. C. (2015). Designing an anti-aliasing filter for ADCs in the frequency domain. Retrieved Oct 19, 2023, from https://www.ti.com
Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galván, E., PortilloGuisado, R. C., Prats, M. A. M., Leon, J. I., & Moreno-Alfonso, N. (2006). Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Transactions on Industrial Electronics, 53(4), 1002-1016. https://doi.org/10.1109/TIE.2006.878356
Eghtedarpour, N., & Farjah, E. (2014). Distributed charge/discharge control of energy storages in a renewable‐energy‐based DC micro‐grid. IET Renewable Power Generation, 8(1), 45-57. https://doi.org/10.1049/iet-rpg.2012.0112
Genc, N., & Koc, Y. (2017). Experimental verification of an improved soft-switching cascade boost converter. Electric Power Systems Research, 149, 1-9. https://doi.org/10.1016/j.epsr.2017.04.015
Goudarzian, A., Khosravi, A., & Raeisi, H. A. (2020). Analysis of a step-up dc/dc converter with capability of right-half plane zero cancellation. Renewable Energy, 157, 1156-1170. https://doi.org/10.1016/j.renene.2020.05.088
Guo, L. (2006). Design and implementation of digital controllers for buck and boost converters using linear and nonlinear control methods (Doctoral dissertation, Auburn University).
Hariri, M. H. M., Desa, M. K. M., Masri, S., & Mohd Zainuri, M. A. A. (2021). Design and Implementation of Three-phase Voltage and Current Transducers for Digital Signal Processing TMS320F28335. Journal of Electrical Systems, 17(1), 141-153. https://doi.org/10.6084/m9.figshare.14446074
Huber, L., & Jovanovic, M. M. (2000). A design approach for server power supplies for networking applications. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058). New Orleans, LA. https://doi.org/10.1109/APEC.2000.822834
Koç, Y., Birbir, Y., & Bodur, H. (2022). Non-isolated high step-up DC/DC converters-An overview. Alexandria Engineering Journal, 61(2), 1091-1132. https://doi.org/10.1016/j.aej.2021.06.071
Lakshmi, M., & Hemamalini, S. (2017). Nonisolated high gain DC–DC converter for DC microgrids. IEEE Transactions on Industrial Electronics, 65(2), 1205-1212. https://doi.org/10.1109/TIE.2017.2733463
Lee, S. W., & Do, H. L. (2018). Quadratic boost DC–DC converter with high voltage gain and reduced voltage stresses. IEEE Transactions on Power Electronics, 34(3), 2397-2404. https://doi.org/10.1109/TPEL.2018.2842051
Pandey, A., & Pattnaik, S. (2023). Ultra gain modified quadratic dc-dc converter with single switch and common ground structure. Third International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). Bhilai. https://doi.org/10.1109/ICAECT57570.2023.10118018
Rezvanyvardom, M., & Mirzaei, A. (2020). High gain configuration of modified ZVT SEPIC-Boost DC-DC converter with coupled inductors for photovoltaic applications. Solar Energy, 208, 357-367. https://doi.org/10.1016/j.solener.2020.07.089
Varesi, K., & Rouin, H. (2023). An ultra step-up non-pulsating input-current dc-dc converter. 8th International Conference on Technology and Energy Management (ICTEM). Babol. https://doi.org/10.1109/ICTEM56862.2023.10083854
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Yavuz Koç

This work is licensed under a Creative Commons Attribution 4.0 International License.
